Trainable Regularization for Multi-frame Superresolution

نویسندگان

  • Teresa Klatzer
  • Daniel Soukup
  • Erich Kobler
  • Kerstin Hammernik
  • Thomas Pock
چکیده

In this paper, we present a novel method for multi-frame superresolution (SR). Our main goal is to improve the spatial resolution of a multi-line scan camera for an industrial inspection task. High resolution output images are reconstructed using our proposed SR algorithm for multi-channel data, which is based on the trainable reaction-diffusion model. As this is a supervised learning approach, we simulate ground truth data for a real imaging scenario. We show that learning a regularizer for the SR problem improves the reconstruction results compared to an iterative reconstruction algorithm using TV or TGV regularization. We test the learned regularizer, trained on simulated data, on images acquired with the real camera setup and achieve excellent results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single and Multi-view Video Super-resolution

Video super-resolution for dual-mode cameras in single-view and mono-view scenarios is studied in this thesis. Dual-mode cameras are capable of generating high-resolution still images while shooting video sequences at low-resolution. High-resolution still images are used to form a regularization function for solving the inverse problem of super-resolution. Exploiting proposed regularization fun...

متن کامل

A Nuclear-norm Model for Multi-Frame Super-Resolution Reconstruction from Video Clips

We propose a variational approach to obtain superresolution images from multiple low-resolution frames extracted from video clips. First the displacement between the lowresolution frames and the reference frame are computed by an optical flow algorithm. Then a low-rank model is used to construct the reference frame in high-resolution by incorporating the information of the low-resolution frames...

متن کامل

Light Field Super-Resolution Via Graph-Based Regularization

Light field cameras can capture the 3D information in a scene with a single shot. This special feature makes light field cameras very appealing for a variety of applications: from the popular post-capture refocus, to depth estimation and imagebased rendering. However, light field cameras suffer by design from strong limitations in their spatial resolution, which should therefore be augmented by...

متن کامل

Image Super Resolution Using Sparse Image and Singular Values as Priors

In this paper single image superresolution problem using sparse data representation is described. Image super-resolution is ill posed inverse problem. Several methods have been proposed in the literature starting from simple interpolation techniques to learning based approach and under various regularization frame work. Recently many researchers have shown interest to super-resolve the image us...

متن کامل

Simultaneous super-resolution and blind deconvolution

In many real applications, blur in input low-resolution images is a nuisance, which prevents traditional super-resolution methods from working correctly. This paper presents a unifying approach to the blind deconvolution and superresolution problem of multiple degraded low-resolution frames of the original scene. We introduce a method which assumes no prior information about the shape of degrad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017